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Abstract

This paper presents a dynamic study of the Wildwood ° Pendulum, a commercially available

desktop system which exhibits a strange attractor. The purpose of studying this chaotic pendulum is two-
fold: to gain insight in the paradigmatic approach of modeling, simulating, and determining chaos in

nonlinear systems, and to provide a desk'top model of chaos as a visual tool. For this study the nonlinear

behavior of this chaotic pendulum is modeled, a computer simulation is performed,, and an experimental

performance is measured. An assessment of the pendulum in the phase plane shows the strange attractor.

Through the use of a box-assisted correlation dimension methodology, the attractor dimension is
determined for both the model and the experimental pendulum systems. Correlation dimension results

indicate that the pendulum and the model are chaotic and their fractal dimensions are similar.

2. Motivation

When studying nonlinear dynamics and chaotic behavior, there is a need to clearly present the

concepts of chaos, strange attractors, and correlation dimension to a non specialist. Many software tools

exist to assist in the graphical display and visualization of chaotic phenomena. However, there is a

definite need for a variety of desktop chaotic systems, that is, small scale devices that clearly demonstrate

chaotic behavior to a variety of audiences, yet are easily modeled, and can be used as teaching tools.

Some of these desktop chaotic devices have been identified in Moon [1], for example, the

coupled neon bulb chaotic relaxation oscillator and Rott's coupled pendula. "The neon bulb system
consists of two neon bulb circuits coupled together and the two circuits exhibit chaotic dynamics in the

form of the flashing bulbs." The other example, Rott's coupled pendula, "allows for transient chaotic

behavior and is designed like a three-armed pendulum puppet". Both these systems .are widely exercised

to gain intuition into their dynamics and for a means to visualize chaos. Other constructable desktop

systems can be found in [1]. In this paper another chaotic desktop system is presented, the Wildwood

Pendulum °. This system is chosen because it exhibits chaotic motion, is commercially available, is

inexpensive, and its unpredictable behavior is intuitive and easily observed.



3. System Description

The Wildwood Pendulum" is a ferromagnetic end mass on a flexible shaft oscillating above an

electromagnet and five permanent magnets. The pivot point is a magnetic hinge with very low damping.

Figure la shows an isometric drawing of the pendulum. Figures lb and lc provide top and side views

which show the arrangement of the pendulum system and define key parameters. Table A provides a list

of measured parameter values used in the pendulum model.

PARAMETER DESCRIPTION VALUE UNITS

G

w

1

M

kp

Rb

Nm

rm

km

Re

gravitational constant 9.8
width of base 93

length of base 164

mass of pendulum (rod and bob) 6.935

pendulum damping factor 0.015

field strength of bob magnet 300

lenph of pendulum bob 145

distance from hinge to base plane 150

number of permanent magnets in base 5

radius of permanent magnets in base 26.77

radius of each permanent mag'net 6.35

field strength of permanent ma_maet I00

radius of electromagnet 8.5

Table A - Parameter Values for the Wildwood Pendulum °
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The pendulum's chaotic behavior is observed when the bob is perturbed about the unforced

equilibrium position, 0o , which is shown in Figure lc. As the bob moves toward 0o , a sense coil

engages the electromagnet which exerts an attractive force on the bob. As the bob moves away from

0o , the sense coil disengages the electromagnet. This has the effect of adding energy to the system by

increasing the acceleration of the pendulum bob. A diagram of the patented circuit for the electromagnet

and sense coil is shown in Figure 2. While the electromagnet exerts an attractive force on the pendulum,

the ferromagnets exert a constant repulsive force.

4. Equations of Motion

To better understand the dynamics of this pendulum and to improve our knowledge of chaotic

systems, a mathematical analysis of this system is performed. To model the pendulum, two different

coordinate systems are used for ease of implementation, and to relate the magnetic forces of the

pendulum bob to the mag"netic forces located in the pendulum base. The coordinate system for the base

is shown in Figure 3a. The base plane coordinates have unit vectors ex, By, and 6z, in the directions of the

x, y, and z axes respectively. Here, the origin is located in a horizontal plane parallel to the top of the

permanent magnets and directly beneath the pendulum hinge point. Spherical coordinates for the

pendulum bob are shown in Figure 3b. This coordinate system has unit vectors ee, e÷, and _, in the theta,

phi and radial directions. The origin of the spherical coordinate system is at the pendulum hinge

point, 0 °
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Inordertosimplifythe model, the pendulum shaft is assumed to be rigid and of fixed length.

Therefore, r is a constant and velocity, f', and acceleration, P, in the radial direction are zero. In this

case the spherical equations of motion [2] reduce to:

position: r = r_ r

velocity: v = r060 ÷ r_sin0&,

acceleration: a-- (r0-rqb2sin0cos0)6o + (r_sin0÷2r0qbcos0)6,

_ ° ÷
m m •

Solving the acceleration equation for the acceleration terms 0 and $, yields the following

differential equations which may be integrated to obtain the pendulum's velocity and position.

rim

a,: $ = 1 .[F,_-2r0+cose]
rsinO[ m

To solve for the required derivatives, the forces exerted on the pendulum bob by the various

magnets must be computed. For simplicity, it is assumed that the force of a particular magnet on the bob

is proportional to the inverse of the distance squared between the pendulum and the magnet. The force

equation is then:

F -

txr 2 zxX 2 +zxy 2 +6Z 2

Here, Kp is the force constant for the permanent magnet in the pendulum bob, and K m is the force

constant for permanent magnets in the base. The distance between the two magnets in question, _, is

computed using base plane coordinates. The sign of the magnetic force constants determines whether the
force is attractive or repulsive in nature. If signs are opposite, the magnets attract. If signs are the same,

they repel.

This same method is used to compute the force of the electromagnet on the pendulum bob. As

the magnetic pendulum bob accelerates towards the electromagnet, the above force equation is assumed;

however, when the pendulum bob moves away from the electromagnet, the force is assumed to be zero

because the electromagnet is switched off when 0 < 0.

When all of the forces have been computed, forces in the same coordinate direction are summed.

the resulting base plane force vector is then transformed to the spherical coordinate system of the

pendulum bob. These forces are then used to compute the acceleration terms 0 and $.



At thispoint, some discussion concerning the peculiarities of the model is in order. All of the

parameters were measured, except for the magnetic strength of the electromagnet. This parameter is

given a relative magnitude with respect to the measured values of the other magnets and observed

behavior of the pendulum. Initially, an attempt was made to measure this value, however, due to the

gaussmeter used, and the interacting field strengths of the base magnets, an accurate measurement of the

electromagnet was not made.

Additionally, a single point source was used initially to represent each magnet. This was

insufficient due to the interacting field strengths of the magnets, because the size of the base magnets is

the same order of magnitude as the distance between the magnets. Representing each magnet in the base

as a cluster of point sources produced behavior more accurately representative of the physical system.

This clustering of point sources is shown in Figure 4.

The simulation of the Wildwood Pendulum ° was performed using the MATLAB ® 4.0 matrix

math package. A copy of the simulation code is given at the end of this paper. Figure 4 gives a typical

response of the simulation in the x-y plane. This time response of the system was obtained by integrating

values of the differential equations using a Runge-Kutta-Fehlberg method. Figure 5 shows a phase plane

representation of this simulation data for @ vs. 0. This phase plane representation gives evidence of the

chaotic nature of this pendulum simulation. This simulation data is used in the dimension determination
section to calculate an estimate of the correlation dimension.

5. Experimental Data

To analyze the chaotic behavior ofthe actual pendulum system, data was gathered from the

Wildwood Pendulum* using the photodiode circuit shown in Figure 6. As the pendulum passes through

the beam of light, the voltage across the photodiode decreases in proportion to the amount of light

observed. This is equivalent to capturing the dynamics of the pendulum in the plane of the light beam.

The time series plot of the voltage over time for the pendulum is shown in Figure 7. The time between

zero crossings of the voltage signal represent the chaotic nature of the pendulum system.

To compare this voltage data with the simulation data, a phase plane portrait of the voltage data

is reconstructed using 10000 data points. To reconstruct the attractor, an independent time series of data

was generated using the following time delay embedding method[3]:

v(t)--(x(t), x(t+T), ..., x(t+(m-l)T).

where v(t) is the independent time series, x(t) is the voltage signal, m is the embedding d!mension, and T
is the reconstruction time delay. For this voltage data, the values of m=4 and T=I were used for the

reconstruction. This reconstruction is used in the next section for determining the dimension of the

experimental system.

6. Dimension Determination

Verification of the fractal behavior of this pendulum is provided using a box-assisted correlation
dimension algorithm [4,5] to determine the dimension of both the simulation data and the measured

pendulum data. Two box-counting correlation dimension algorithms are used to ensure the dimension is
accurate.



Forthecorrelationdimensionmethod,4000datapointsareusedandthefirst 1000pointsare
thrownoutastransient.Using3000datapointsforboththeexperimentaldataandthesimulationdata
allowsforaccuratepredictionof correlationdimensionuptoapproximately7,accordingtothefollowing
equationfromEckmannandRuelle[6]whichstates:

MaximumAccurateDimension< 2 log(numberof datapoints).

Withthislimit inmind,thecorrelationdimension,(orcorrelationexponent),wascalculatedfor both
pendulumsystemsusingaGrassberger-Procacciacorrelationintegral.J7]Thiscorrelationexponentis
closelyrelatedtothefractaldimensionandgivesa lowerboundto thefractaldimension.The

Grassberger-Procaccia algorithm using Theiler's method[4,5] considers the spatial correlation between

pairs of points on a reconstructed attractor, and is measured with the following correlation integral:

C_,r) = 2 E I-I(r-II x_- xj II),
N(N - 1)

where H(x) is the Heaviside step function. The summation counts the number of pairs ( x i, x4 ) for which
this distance is less than r, where r is the box size. Then C(N,r) scales like a power of v so that:

C(N,r) = r v

where v is the correlation dimension which is the slope, of the log-log plot of C(N,r) vs. r.

The correlation dimension is calculated first for the experimental pendulum data with Theiler's

box-assisted method, using embedding dimensions from m=4 to m=7. The correlation dimension from

this method is approximately 3.47. The same correlation dimension method is used to calculate the

dimension for the simulation data. The log-log plots of C(N,r) vs. r for the simulation data only

converged for embedding dimensions of m=4 and m=5, with a resulting, correlation dimension of 3.2.

To corroborate the dimension results for the simulation data, another box-counting method using

the Grassberger-Procaccia algorithm was implemented. This method was used only on the simulation
data. From this analysis the simulation equations exhibit a fractal dimension of approximately 3.3.

From these dimension results it is concluded that the modeled pendulum equations closely match

the behavior exhibited by the actual Wildwood ©chaotic pendulum. Both the simulated data and the

measured data resulted in a similar correlation dimension of approximately 3.4.

7. Conclusions

From the study of desktop chaotic systems insight is gained in modeling, simulating, and

analyzing chaos in nonlinear systems. The Wildwood ° pendulum is chosen for analysis because its

chaotic behavior is easily observed and its fractal dimension has not been determined previously. For this

pendulum, the model equations are given and analyzed using both correlation dimension techniques and

Lyapunov characteristic exponent methods. Experimental data is gathered for the pendulum, and the
attractor dimension of the measured data is calculated. Both the modeled pendulum and the measured

pendulum data represent a chaotic system with similar attractor dimensio.n. This process was made easier

with the use of desktop systems like the chaotic pendulum, which provided a system to easily visualize
chaotic behavior.
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Figure la. The Wildwood Chaotic Pendulum Figure lb. Top View of the Chaotic Pendulum
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%PEND3RUN.M ... Matlab M-file used to Run Wildwood Pendulum Simulation

%Global Variables ...

global G;,
% global W;

global M;

global Kd;

global Kp;

global Rp;

global Rb;

%C--ravitational Cosntant

%Weight of Pendulum
%Mass of Pendulum

%Pendulum Damping Constant

%Pendulum Magnetic field Strength Const (Perm Magnet)
%Pendulum Radius

%Distance from Pendulum Support to Base Plane

% global Nm;

% global Mm;
% global NMm;

% global Rm;
% global rm;

global xm;
global Ym;

global Km;

%Number of Permanent Magnets

%Number of Point Sources/Perm Magnet

%Total Number of Point Sources for Perm Magnets

%Radius of Permanent Magnets in Base Plane

%Radius of Individual Permanent Magnet

%X Loc of Permanet Magnet Sources in Base Plane Coords

%Y Loc of Permanet Magnet Sources in Base Plane Coords

%Field Strength Const of Individual Perm Magnets)

% global NMe;
% global re;

global Xe;

global Ye;

global Ke;

%Total Number of Point Sources for Electro Magnet
%Radius of the Electro Magnet

%X Loc of Electromagnet Sources in Base Plane Coords

%Y Loc of Electromagnet Sources in Base Plane Coords

%Field Strength Const of Electromagnet

%If "CONTINUE" is set then start simulation from where it left off ...

if exist('CONTINUE') - = 1;

%K0 is used to Vary different parameters in the simulation

if exist('K0')- =1; K0=I, end;

%Define Parameters for Pendulum Bob

G = 9.8; %meters/see/see

M = 0.007; %kg
W = M'G;, %newtons

Kp = 3.0e-3;
Rp = 0.145; %meters
Rb = 0.150; %meters

%Calculate some reasonable numbers for damping

% Damping = -Kd*THd

zeta = 0.015; %damping constant for pendulum

wn = sqrt(G/Rp); %undamped natural frequency of simple pendulum
Kd = 2"zeta'wn; %kg/sec

%Define Parameters for Permanent Magnets

Rm = 0.027; %meters
rm = 0.007; %meters

%Use 5 Evenly Spaced Magnets. Each Magnet has 7 Point Sources.

Nm = 5; %Number of Permanent Magnets (best odd)

M.m = 7; %Number of Point Sources/Magnet (even perimeter best)
NMm = Nm'Mm; %Total Number of Magnets

%Calculate Position of Magnets in Base Plane Coords

THe = 2*pi*[0:Nm-1]/Nm; %Theta Position Each Magnet

%Convert Magnet Position From Polar to Cart Coords

[Xc,Yc] = pol2cart('rHc,Rm" ones(size(THe)));
%Calculate Position of Point Sources relative to center of each magnet

% Save one point source for the center

THIn = 2" pi *[0:Mm-2]'/(Mm- 1) + pi; %Theta Position
%Convert Point Source Position to Cart Coords

[Xt,Yt] = pol2cart(THm,rm "ones(size(THin)));
%Source Absolute Position = Source Relative Posidon + Magenet Mid Point
% Set Source at Mid Point of each magnet



Xm=[Xc;ones(size(Xt))*Xc+Xt*cos(THc)-Yt'sin(THc)];Xm--Xra(:)';
Ym=[Yc;ones(size('Yt))*Yc+Xt*sin(THc)+Yt°cos(THc)];¥m=Ym(:)';
%ForceConstforEachMagnet
%NeedsamesignasKpforrepulsive force
Km = (Kp/3)°ones(size(Xm))/Mm;

%Define Parameters for Electro Magnets
re = 0.008; %meters

%Use a Single Magnet with 9 Point Sources.
NMe = 9; %Total Number of Magnets

%Calculate Position of Point Sources relative to center of magnet

% Save one Point Source for Center of each magnet

THe = 2*pi *[0:NMe-2]'/(NMe- 1) + pi; %Theta Position
%Convert Point Source Position to Cart Coords

[Xe,Ye] = pol2cart(THe,re* ones(size (THe)));
%Set Point Source at center of each magnet

Xe=[0 Xe(:)'];
Ye=[0 Ye(:)'];

%Force Const for the Magnet

% Need sign opposite of Kp for attraction

Ke = -Kp/40 °ones(size(Xe))/NMe;

%Define Start (T) and Stop (Tfinal) Times for Integration Routine
T=0; Tfina]=10; Tc2Ts=0;

%Define Initial Conditions of the Pendulum Relative to Hinge Point

%... [Theta ThetaDOT Phi PhiDOT] (angles in radians)

% 0 .>= Theta <= pi

% -pi>= Phi <= pi
STATES=[pi-pilll 0 pi/4 0];

end;

%Break out of Integration Routine to save data and report to user

% every DTR seconds

DTR = (Tfinal-m ax(T))/20;

%Run System Simulation

pend2ph; set(gca,'DrawMode','fast'); drawnow

if ( max(T)<Tfinal-eps )

Tc0 = dock; Ts0=max(T);

whi]e (max(T)+eps<Tfina])
%Calculate Time Limits for Current Segment of Simulation

n=length(T); t0=T(n); tl=min(t0+DTR,Tfinal);

%Report Status to the User
note= ['Running the Simulation from T=',n2s(t0),' to T=',n2s(tl)];

if Tc2Ts>0; note=[note '; Clock/Sim Time=',n2s(Tc2Ts)]; end

disp(note)

%Run Simulation for Specified Segment

[t,states] = ode23('pend3ode',t0,tl,STATES(n,:),2.0e-4);

%Append Results to F_..xisting States

In,m]--size(states); T=[T;t(2:n)]; STATES=[STATES;states(2:n,:)];
%Plot Current Data

hold on;

plot(Rp °sin(states(:,l)).* cos(states(:,3)) ....
Rp°sin(states(:,l)). *sin(states(:,3)),'m.' ....

'EraseMode','none');
hold off;

if exist('hTf')= = 1;

set0aTf,'Stfing',['Tfinal -- ',num2str(max(T)),'sec']);
end;
drawnow

%Give User a Measure of the System Performance

Tc2Ts = fix(etime(clock,Tc0)/(max(t)-Ts0));
end

end;
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function [derivs] = pend2ode(t,states)
%

% FUNC-qTON: pend2ode
%

% PURPOSE: Compute derivatives for a conical pendulum in a chaotic system.
%

% SYNTAX: [derivs]=pend2ode(t,states)
%

% Global Variables ...

global _,,
% global W;

global M;

global Kd;

global Kp;

global Rp;

global Rb;

% global Nm;

% global M_;
% global NMm;
% global Rm;

% global rm;

global Xm;

global Ym;

global Km;

% global NMe;

% global re;

global Xe;
global Ye;

global Ke;

%Gravitafiona] Cosntant

%Weight of Pendulum
%Mass of Pendulum

%Pendulum Damping Constant

%Pendulum Magnetic field Strength Const (Perm Magnet)
%Pendulum Radius

%Distance from Pendulum Support to Base Plane

%Number of Permanent Magnets

%Number of Point Sources'Penn Magnet

%Total Number of Point Sources for Penn Magnets
%Radius of Permanent Magnets in Base Plane

%Radius of Individual Permanent Magnet

%?( Location of Pennanet Magnet Sources in Base Plane Coords

%Y Location of Permanet Magnet Sources in Base Plane Coords

%Field Strength Const of Individual Penn Magnets)

%Total Number of Point Sources for Electro Magnet

%Radius of the Electro Magnet

%)( Location of Electromagnet Sources in Base Plane Coords

%Y Location of Electromagnet Sources in Base Plane Coords

%Field Strength Const of Electromagnet

%Extract States from "state" vector

%THETA: measured counter-clockwise from the x-axis in the x-y plane)

TH = states(I); %Theta

THd = states(2); %Theta dot
%PHI: measured clockwise from the z-axis in the y-z plane)

PH = states(3); %Phi

PHd = states(4); %Phi dot

%Calculate Location of Pendulum in Cart Base Plane Coords

Xp = Rp*sin(TH)'cos(PH);

Yp = Rp°sin(TH)*sin(PH);
Zp = Rb+Rp*cos(TH);

%Calculate the Distance Between the Permanent Magnets and the Pendulum

dXm = Xp*ones(sizeCX.m))-Xm;% %x dist pend to mag

dYm = Yp*ones(size('Ym))-Ym;% %y dist pend to mag

rpsq = dX.m."2 + dYm."2;% %dist in plane squared

rp = sqrt(rpsq);% %dist in plane
nnsq = rpsq + Zp'Zp;% %dist pt to pt squared

rm = sqrt(rmsq);% %dist pt to pt

%Calculate Forces of Permanent Magnets on Pendulum
% A_ume that the Force is proportional to Kl*K2/(r'r),

% where 'r' is the distance between the pendulum and a magnet

% If Kp*Km < 0 force is attracting,
% If Kp*Km = 0 No force

% If Kp°Km > 0 force repelling

Fm = Kp*Km./rmsq;% %Total force
%Reduce the Forces to Their Cart Coord Components

Fmx = Fm.*dXra./rm;% %x force in base plane coords

Fmy = Fm.*dYm./rm;% %y force in base plane coords
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Fmz = Fm.*Zp./rm;% %z force in base plane coords

%Caluculate Force of Electromagnet cluster (at 0;0) on pendulum

% A_ume that the Force is proportional to Kp*Ke/(r'r),

% where 'r' is the distance between the pendulum and a electromagnet

% If Kp*Ke < 0 force is attracting,

% If Kp*Ke = 0 No force
% If Kp°Ke > 0 force repelling

dXe = Xp*ones(siz-e(Xe))-Xe; %x dist pend to mag
dye = Yp*ones(size(Ye))-Ye; %y dist penal to mag

rpsq = dXe. ^ 2 + dYe. ^ 2; %dist in plane squared

rp = sqrt(rpsq); %dist in plane
resq = rpsq + Zp°Zp; %dist pt to pt squared

re = sqrt(resq); %dist pt to pt
%The Electro Magnet is on only if the Pendulum Bob is moving

% toward it.

if(THd > 0)

Fe = Kp.*Ke.#esq; %Total force
else

Fe=0;

end
%Reduce the Forces to Their Cart Coord Components

Fex = Fe.'dXe./re;% %x force in base plane coords

Fey -- Fe.*dYe./re;% %y force in base plane eoords

Fez = Fe.*Zp./re;% %z force in base plane coords

%Calcuaate Gravitational Force on Pendulum

Fgz = -M*Cr,% %Force Due to Gravity in base plane coords

%Calculate Total Forces in Base Plane

Ftx = sum( [ Fmx, Fex ] );% %x Force in base plane coords

Fry = sum( [ Fray, Fey ] );% %y Force in base plane coords

Ftz -- sum( [ Fmz, Fez, Fgz ] );% %z Force in base plane coords

%Transform Base Plane Forces to Spherical Coords
% Define Transformation Matrix

'ru=[ _O:'I.-I)'_(TI-I) sinO'I-I)'c,_'_ -_in(I'VI)
-sin(PH) cos('PI--I) 0

cos(PH)'sin(TH) sin(PH)'sin(TH) cos(TH)

];
%Calculate the Forces in the Pendulums Coord

FTH = TM(1,:)*[Ftx;Fty;Ftz];

FPH = TM(2,:)*[Ftx;Fty;Ftz];

FR = TM(3,:)*[Ftx;Fty;Ftz];

%Calculate the Derivatives

RpSq = Rp*Rp; THdc = THd"3;

THdd = (FTH]M + Rp*PHd*PHd*sin(TH)*cos(TH) -Kd*THd*Rp)/Rp;

if(TH -= O)
PHda = (F'PH/M - 2*Rp*THd*PHd*cos('_)/('Rp*sin(q'H));

end

derivs = [ THd THdd PHd PHdd];
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